Adhesive Bonding Experience at Cirrus Design

Paul Brey Airframe Engineering

Cirrus Products

SRV

Powerplant Gross Weight Cruise Speed Instrumentation TCM IO-360ES 200 HP 3000 Ibs 150 KTAS VFR

SR20

Powerplant Gross Weight Cruise Speed Instrumentation TCM IO-360ES 200 HP 3000 lbs 154 KTAS IFR INRE IN CONTRACTOR

SR22

Powerplant Gross Weight Cruise Speed Instrumentation TCM IO-550N 310 HP 3400 lbs 178 KTAS IFR

Fuselage Construction

Wing and Stabilizer Construction

Horizontal Stabilizer Structural Assembly

- Fail-safe design
- Adhesively bonded fuselage installation
- Foam core stiffened skins

Wing Structural Assembly

- Single spar design
- One-piece C-section main spar
- Core stiffened skins
- Integral fuel tanks

Materials

- E- and S-Glass Prepreg
 - 250F Cure
 - Oven/Vacuum processing
- Divinycell foam core sandwich
 - 3/8" and 1/4"

Materials

- Paste adhesive bonded
 - Low loads
 - Tolerant of laminate and tooling variation
 - Robust with good surface prep
 - Allow up to .080" thick

Adhesive Bonding – What Are The Issues?

- The design and substantiation process is pretty well understood:
 - Process selection
 - Process development
 - Detail design
 - Structural substantiation
- Then come the other things:
 - Production scale up issues
 - Product in service issues
 - Process evolution
 - Design evolution

Certification

Does the substantiation and cert work support this?

Substantiation Issues

- Bonding Issues for Substantiation
 - Damage tolerance and defects
 - Environment changes in strength and stiffness
 - Mixed and competing failure modes
 - Overloading and geometric nonlinear effect

Damage Tolerance and Defects

- Can you predict the future?
 - What kind?
 - How many?
 - How close together?
 - How can you describe them and their limitations in an inspection spec?
- The applicant must anticipate and select "acceptable" manufacturing and service defects
- Selection requires a priori knowledge of failure modes, hot spots, and manufacturing limitations
- The real guidance is experience and judgment...

Damage Tolerance and Defects

- Considerations
 - Have an NDE plan and understand it's limitations
 - Have a plan to be able both interpolate and extrapolate size and proximity effects
 - Understand that everything is a stress concentration
 - Use the building block approach to understand stress concentration details
 - Consider multiple full scale test articles
 - Accomplish sensitivity evaluation for unique defect and repair schemes
- If you don't, every "non-standard" production defect is a crisis

Environment – Changes In Strength and Stiffness

- Is ETW or CTD your real enemy with thick bonds?
- For the 418/L418 paste system Cirrus tested for a particular joint

Environment – Changes In Strength and Stiffness

- ETW Bonds
 - Modulus is reduced
 - Elastic peak stress is reduced.....
 - Plastic strain capability is often improved
 - Failure strength is reduced
 - But, more load redistribution occurs in the structure....
- CTD Bonds
 - Modulus is increased
 - Elastic peak stress is increased....
 - Plastic strain capability is reduced
 - Failure strength is increased
- So, what can you infer from RTD testing?

Competing Failure Modes

- Structural test overloads to account for "worst case" environmental material properties are difficult
 - Do you pick laminate strength, laminate stiffness, adhesive strength, adhesive stiffness, or some other parameter for the overload criteria?
- Test overloads result in unnecessarily high strains
 - Geometric nonlinear effects and secondary loading can cause failure that is not achievable in the operating or ultimate envelope
- Is the answer to accomplish the full-scale test at each environmental condition????

<u>Or</u>

• Do you over-design to pass the worst environmental factor for your selected test condition and pay the weight/cost penalty?

Or

• Can you design a building block program supported by analysis with the necessary confidence in extrapolating analysis to conditions that are difficult to test?

The Things After Initial Certification

- Production scale up issues
- Product in service issues
- Process evolution
- Design evolution
- These issues challenge the substantiation basis of the product every day
- Remember....they are all positive in terms of customer value and profitability!

Production Scale Up

Production Scale Up

- Facility controls and changes
 - Growth requires facility changes and operational realignments
 - How does your test data and analysis methods support changes in
 - Particulates and ventilation?
 - Contaminants?
 - Temperature and humidity?
 - Part staging?
 - Batching and delays?
 - Can you tell when these factors might be affected?
- Personnel issues
 - How sensitive is your process to training and operator skill?
 - Adequate and continuous training and monitoring is crucial

Production Scale Up

- Scaling up purchasing
 - Can you supplier provide the material quantities you need for your business plan?
 - Are your materials single source?
 - How will you deal with second source or alternate material qualification?
 - Will it push you back into full scale test?
 - This should play a significant role in material selection
- Scaling up Supplier Quality Assurance
 - Moving to large quantities requires effective supplier SPC
 - Balancing JIT inventory and rate production requires an understanding of "go/no-go" decisions on materials that may be non-conforming but still acceptable
 - This can and should be addressed at the substantiation level

Product In Service Issues

- The is little general experience at the small field FBO level with bonded structures for service damage assessment
- Damage assessment and repair must be included in the substantiation plan

Product In Service Issues

• Here is one approach to having confidence in ferry flights...

Fractured compression skin bond

Process Evolution

- Every intended manufacturing process changes
- Continuous Improvement means:
 - Manufacturing will never remain at steady state
 - Cycle time reduction efforts will inevitably try chip away at perceived process "margins"
 - This concept is successful in all other industries....
- If your company is well run, you will be challenged to reduce direct material, labor, and overhead costs on a regular basis
- Management changes
 - Significant leadership changes in a company can actually wipe out an existing culture and replace it
 - The substantiation approach needs to be flexible so that changes can be assimilated without requiring extensive new test programs

Process and Design Evolution

- As an example, our fuselage bonding process went from this....
 - 5 subassy stages
 - 2 complete tool sets
 - 5 initial cure oven runs per unit
 - 24 technicians on 3 shifts
 to produce
 10 units per week

Process and Design Evolution

- To this....
 - 2 subassy stages
 - One tool set
 - Initial cure in tooling
 - 6 technicians
 on one shift
 to produce
 10 units per
 week

